Abstract

AbstractSilica–polystyrene core‐shell particles were successfully prepared by surface‐mediated reversible addition fragmentation chain transfer (RAFT) polymerization of styrene monomer from the surfaces of the silica‐supported RAFT agents. Initially, macro‐RAFT agents were synthesized by RAFT polymerization of γ‐methacryloxypropyltrimethoxysilane (MPS) in the presence of chain transfer agents (CTAs). Immobilization of CTAs onto the silica surfaces was then performed by reacting silica with macro‐RAFT agents via a silane coupling. Grafting of polymer onto silica forms core‐shell nanostructures and shows a sharp contrast between silica core and polymer shell in the phase composition. The thickness of grafted‐polymer shell and the diameter of core‐shell particles increase with the increasing ratio of monomer to silica. A control experiment was carried out by conventional free radical emulsion copolymerization of MPS‐grafted silica and styrene under comparable conditions. The resulting data provide further insight into the chemical composition of grafted‐polymers that are grown from the silica surface through RAFT process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 467–484, 2009

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call