Abstract

The evaluation of PFAS immobilization performance in laboratory experiments, especially the long-term stability, is a challenge. To contribute to the development of adequate experimental procedures, the impact of experimental conditions on the leaching behavior was studied. Three experiments on different scales were compared: batch, saturated column, and variably saturated laboratory lysimeter experiments. The Infinite Sink (IS) test – a batch test with repeated sampling – was applied for PFAS for the first time. Soil from an agricultural field amended with paper-fiber biosolids polluted with various perfluoroalkyl acids (PFAAs; 655 μg/kg ∑18PFAAs) and polyfluorinated precursors (1.4 mg/kg ∑18precursors) was used as the primary material (N-1). Two types of PFAS immobilization agents were tested: treatment with activated carbon-based additives (soil mixtures: R-1 and R-2), and solidification with cement and bentonite (R-3). In all experiments, a chain-length dependent immobilization efficacy is observed. In R-3, the leaching of short-chain PFAAs was enhanced relative to N-1. In column and lysimeter experiments with R-1 and R-2, delayed breakthrough of short-chain PFAAs (C4) occurred (> 90 days; in column experiments at liquid-to-solid ratio (LS) > 30 L/kg) with similar temporal leaching rates suggesting that leaching in these cases was a kinetically controlled process. Observed differences between column and lysimeter experiments may be attributed to varying saturation conditions. In IS experiments, PFAS desorption from N-1, R-1, and R-2 is higher than in the column experiments (N-1: +44 %; R-1: +280 %; R-2: +162 %), desorption of short-chain PFAS occurred predominantly in the initial phase (< 14 days). Our findings demonstrate that sufficient operating times are essential in percolation experiments, e.g., in column experiments >100 days and LS > 30 L/kg. IS experiments may provide a faster estimate for nonpermanent immobilization. The comparison of experimental data from various experiments is beneficial to evaluate PFAS immobilization and to interpret leaching characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.