Abstract

The expansion of double Shockley stacking faults (DSFs) in an n-type 4H-SiC substrate with a nitrogen concentration of 3.9×10 19 cm −3 was investigated using in situ synchrotron X-ray topography. DSF expansion was observed to be suppressed and immobilized above 1590 K, along with the partial dislocation (PD) shape being changed from a straight to zig-zag configuration. For a different heating process (higher heating rate), the PDs could continue to expand, even above 1590 K. Ex situ topography experiments revealed that the DSFs close to the specimen surface expanded widely, although those expanding toward the specimen interior became immobile. One possible mechanism for this immobilization was proposed, where the core structural changes from a Si-core to the C-core by climb motion induced by the interaction between the PDs and point defects (C interstitials).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.