Abstract
To overcome logistical difficulties with current designs of cell- or tissue-based biosensors which have individual cells or tissue slices immobilized on membranes or microelectrode arrays, we have proposed a system that uses three-dimensional cultures of neural cells immobilized in hydrogel matrices. In this design, immobilized cells would be maintained in a reservoir and then transferred to a detector platform when needed for analysis. The development of such a system relies upon a renewable supply of cells and the ability to culture cells for long periods of time in three-dimensions while maintaining their physiological function. To investigate the ability to culture neural cells in 3D matrices, embryonic rat cortical neurons and astrocytes were immobilized by matrix entrapment in a novel sugar poly(acrylate) hydrogel and collagen gels. The sugar poly(acrylate) hydrogel does not appear to support neural cell growth as a result of a lack of cell adherence, small pore size and, possibly, harshness of synthesis conditions. In contrast, collagen gels support the growth of cortical neurons, astrocytes, as well as neural progenitor cells. Evidence is also presented from immunocytochemistry and patch-clamp measurements which shows that neural progenitor cells proliferate in culture and can be induced to differentiate into neural cell types. Thus, they potentially represent a renewable cell source.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.