Abstract

Silicone rubbers are hydrophobic, a feature that may prove advantageous if this material is to be used as immobilization matrix in bioconversion systems where hydrophobic species are present, such as sterols and mycobacterial cells. Mycobacterium sp. cells with sitosterol side chain cleavage activity were accordingly effectively adsorbed onto silicone and the potential application of the concept was assessed by matching the behavior of the resulting immobilized biocatalyst with free cells and Celite immobilized cells. Mass transfer, kinetics, thermal and storage stability characterization of a biotransformation system based in the use of the silicone immobilized biocatalyst was performed. The feasibility of biocatalyst reutilization was tentatively explored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call