Abstract
Chitin was functionalized with hexamethylenediamine followed by glutaraldehyde activation, and its capacity to bind Candida rugosa lipase was investigated. The loading of 250 units g(-1) support showed to be effective, resulting in a uniform enzyme fixation with high catalytic activity. Both free and immobilized lipases were characterized by determining the activity profile as a function of pH, temperature, and thermal stability. For the immobilized lipase, the influence of the reaction temperature and substrate polarity in nonconventional biocatalysis was also analyzed. Production of butyl esters was found to be dependent on the substrate partition coefficient, which accounts the greatest value for the system butanol and butyric acid. The highest enzyme activity was found for the system butanol and caprylic acid at a reaction temperature of 40 degrees C. Under such conditions, the operational stability tests indicated that a small enzyme deactivation occurs after 12 batches, revealing a biocatalyst half-life of 426.7 h.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.