Abstract

In this study, a biphasic enzymatic membrane reactor was made by immobilizing Candida Rugosa lipase onto the dense surface of polysulfone ultrafiltration membrane by filtration and then cross-linking with glutaraldehyde solution. The reactor was further applied for the hydrolysis of olive oil, the performance of which was evaluated in respect of apparent reaction rate based on the amount of fatty acids extracted into the aqueous phase per minute and per membrane surface. It was found that the ultrafiltration and cross-linking process greatly improved the reaction rate per unit membrane area and the enzyme lifetime. The highest reaction rate reached 0.089 μmol FFA/min cm 2 when the enzyme loading density was 0.098 mg/cm 2. The results also indicated that the performance of lipase immobilized on the membrane surface was superior to that immobilized in the pores, and the apparent reaction rate and stability of immobilized lipases were improved greatly after cross-linking. It suggested that immobilization of enzymes by filtration and then cross-linking the enzymes onto the membrane surface is a simple and convenient way to prepare a high-activity immobilized enzyme membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call