Abstract
In this paper, we report the synthesis of MnCO3−Au hybrid microspheres and their application on the electrochemical biosensing of hydrogen peroxide (H2O2) based on the immobilization of hemoglobin (Hb). The characterization of MnCO3−Au microspheres revealed that an abundance of Au nanoparticles (AuNPs) has been absorbed on the surface of the spherical MnCO3 by the electrostatic assembly. The combined unique properties of MnCO3−Au microspheres are beneficial for the realization of the direct electron transfer of Hb. Hb immobilized on the microspheres maintained its biological activity, showing a surface-controlled process with the heterogeneous electron transfer rate constant (k s) of 2.63 s−1. The fabricated biosensor displayed an excellent performance for the electrocatalytic reduction of H2O2. The linear range for the determination of H2O2 was from 0.06–40.0 μM with a detection limit of 0.015 µM (S/N = 3). The biosensor also exhibited high selectivity, good repeatability and long-term stability, which offers great potential for H2O2 detection in real sample analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.