Abstract

► Coconut fiber was successfully used to immobilize commercial laccase by adsorption. ► The immobilization improved the operational and thermal stabilities of free enzyme. ► A high decolourization of practically all reactive textile dyes studied was obtained. An effort has been made to find a cheaper, easily available and simple alternative for the immobilization of enzymes and subsequent utilization at large scale in textile wastewater treatment. Commercial laccase was immobilized for the first time on an agroindustrial residue, green coconut fiber, by physical adsorption. The effect of the immobilization conditions (enzyme concentration, contact time and pH value) on the properties of the biocatalyst was determined. Then, the immobilized enzyme characterization was performed and kinetic parameters were obtained. Thermal and operational stabilities were improved compared with free commercial laccase showing its potential for continuous applications. Finally, the performance of immobilized laccase for the continuous degradation of various reactive textile dyes and of a mixture of them in batch reactors was evaluated. Two phenomena were observed: decolourization of the solutions due to dyes adsorption on the support and due to the enzyme action. A high decolourization percentage of practically all dyes in the first two cycles and an effective decolourization of the dye mixture were obtained, showing the suitability of the immobilized commercial laccase for continuous colour removal from textile industrial effluents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.