Abstract

For the first time, cellulase was successfully immobilized on a magnetic core-shell metal-organic framework (MOF) material, UIO-66-NH2. The as-prepared immobilized cellulase demonstrated a high protein loading efficiency of 126.2 g/g support and a high enzyme activity recovery of 78.4%. Cellulase immobilized on magnetic UIO-66-NH2 exhibited a superior performance in terms of pH stability, thermal stability and catalytic efficiency compared to its free form. Notably, immobilized cellulase could be recycled for up to 5 consecutive runs. Furthermore, compared to free cellulase, immobilized cellulase showed better tolerance to formic acid and vanillin, two typical inhibitors found in lignocellulosic prehydrolysates. In the presence of 5 g/L of formic acid and vanillin, immobilized cellulase demonstrated 16.8% and 21.5% higher activity than free enzyme, respectively, and its improvement in hydrolysis yield was 18.7% and 19.6% respectively. This is firstly confirmed that immobilization can alleviate the inhibitory effects of certain pretreatment inhibitors on cellulase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.