Abstract
A cell adhesive peptide moiety, Gly-Arg-Gly-Asp-Tyr (GRGDY), was immobilized onto the surface of highly porous biodegradable polymer scaffolds for enhancing cell adhesion and function. A carboxyl terminal end of poly( d,l-lactic- co-glycolic acid) (PLGA) was functionalized with a primary amine group by conjugating hexaethylene glycol-diamine. The PLGA-NH 2 was blended with PLGA in varying ratios to prepare films by solvent casting or to fabricate porous scaffolds by a gas foaming/salt leaching method. Under hydrating conditions, the activated GRGDY could be directly immobilized to the surface exposed amine groups of the PLGA-NH 2 blend films or scaffolds. For the PLGA blend films, the surface density of GRGDY, surface wettability change, and cell adhesion behaviors were characterized. The extent of cell adhesion was substantially enhanced by increasing the blend ratio of PLGA-NH 2 to PLGA. The level of an alkaline phosphatase activity, measured as a degree of cell differentiation, was also enhanced as a result of the introduction of cell adhesive peptides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.