Abstract

Candida rugosa lipase (CRL) was immobilized on glutaraldehyde-activated aminopropyl glass beads by using covalent binding method or sol-gel encapsulation procedure and improved considerably by fluoride-catalyzed hydrolysis of mixtures of RSi(OCH3)3 and Si(OCH3)4. The catalytic properties of the immobilized lipases were evaluated into model reactions, i.e. the hydrolysis of p-nitrophenylpalmitate (p-NPP). It has been observed that the percent activity yield of the encapsulated lipase was 166.9, which is 5.5 times higher than that of the covalently immobilized lipase. The enantioselective hydrolysis of racemic Naproxen methyl ester by immobilized lipase was studied in aqueous buffer solution/isooctane reaction system and it was noticed that particularly, the glass beads based encapsulated lipases had higher conversion and enantioselectivity compared to covalently immobilized lipase. In short, the study confirms an excellent enantioselectivity (E>400) for the encapsulated lipase with an ee value of 98% for S-Naproxen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.