Abstract

Arsenic is an abundant element associated with a wide range of minerals and a major contaminant in metallurgical wastewater. For the immobilization of arsenic, iron arsenate in the very stable mineral scorodite (FeAsO4 2H2O) is the preferred route. Microorganisms of the natural iron cycle living at pH below 2 and high temperatures can conduct the oxidation of ferrous iron with oxygen, which is not feasible chemically at these extreme conditions. Remarkably, at similar acidic conditions and high temperature these microorganisms can also carry out the oxidation of arsenite (As(III)) to arsenate (As(V)). Using these intrinsic features of the microorganisms, we have investigated the role of a thermoacidophilic mixed culture in the oxidation of As(III) and precipitation of (As(V) in the form of scorodite from a synthetic wastewater containing 6.7mM of As(III) and 0.5%Wt pyrite as main iron Fe(II) source. The results indicate that As(III) was completely oxidized from the synthetic wastewater in the presence of pyrite and scorodite was formed only in presence of the mixed culture at a Fe/As:1.3. This is a combination of biological oxidation and biocrystallisation accomplished to the presence of pyrite not only as the main energy source for the microorganisms, but as catalyst in the As(III) oxidation reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call