7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1016/j.jiec.2021.07.002
Copy DOIPublication Date: Jul 9, 2021 | |
Citations: 29 |
Metal-organic frameworks (MOFs) that include bioactive metals may exhibit activity against various microbes through metal–ligand bond cleavage to release metal ions or ligands into the media. However, controlled release over an extended time is required to avoid toxicity due to excess metal ions for successful clinical applications. Recently, copper-based MOFs (Cu-MOFs), which showed sustained release capability, porosity, and structural flexibility, exhibited antibacterial properties. Herein, toward the development of regenerative biomedical applications, we immobilized a robust Cu-MOF containing glutarate and 1,2-bis(4-pyridyl)ethylene ligands within biocompatible polydimethylsiloxane (PDMS) via simple hydrosilylation at 25 °C. The PDMS-immobilized Cu-MOF (PDMS@Cu-MOF) exhibited concentration-dependent antibacterial activities against five bacterial strains: Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and methicillin-resistant Staphylococcus aureus. Furthermore, PDMS@Cu-MOF maintained the physical and thermal properties of PDMS and showed low cytotoxicity toward mouse embryonic fibroblasts. Owing to its antibacterial properties and low cytotoxicity, PDMS@Cu-MOF exhibited potential for medicinal applications, such as implants, skin disease treatment, wound healing, and drug delivery.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.