Abstract
A lanthanide-alkali (HoIII−KI) bimetallic α-Po type 3D framework {KHo(C2O4)2(H2O)4}n (1) (C2O42- = oxalate dianion) has been synthesized and structurally characterized. Its dehydrated framework 1′, after removal of the K-bound water molecules, is found to exhibit permanent porosity with a clear size selective vapor sorption properties and H2 storage capability. High heat of H2 sorption (approximately −10 kJ/mol) observed in experiment is shown to arise from the preferential interaction of H2 with unsaturated KI sites decorated on the pore surfaces, using first-principles density functional theory-based calculations of energetics as well as the detailed structure. Our work shows that a material with better hydrogen storage and release properties can be developed through immobilization of unsaturated reactive alkali metal ions at the pore surfaces in a metal-organic framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.