Abstract

Patulin (PAT) is a highly toxic mycotoxin, which can contaminate fruits and their products and cause harm to human health. Cellulose nanocrystals (CNCs) were functionalized by magnetite nanoparticles, dopamine (DA) and polyethyleneimine (PEI) to form a multifunctional nanocarrier (DA/PEI@Fe3O4/CNCs) for immobilizing aldo-keto reductase (MgAKR) to degrade PAT. The MgAKR-DA/PEI@Fe3O4/CNCs were reusable and environmentally friendly due to its surface area, high magnetization value, and oxygen/amine function. The immobilization method significantly improved reusability, resistance to proteolysis, temperature stability and storage stability of MgAKR-DA/PEI@Fe3O4/CNCs. With NADPH as a coenzyme, the detoxification rate of MgAKR-DA/PEI@Fe3O4/CNCs on PAT reached 100 % in phosphate buffer and 98 % in fresh pear juice. The quality of fresh pear juice was unaffected by MgAKR-DA/PEI@Fe3O4/CNCs and could be quickly separated by magnet after detoxification, which was convenient for recycling. It has broad application prospects in the control of PAT contamination in beverage products containing fruit and vegetable ingredients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.