Abstract

The use of immobilized alcohol dehydrogenases (ADHs) offers numerous advantages, especially in the reaction conditions required by industrial applications. Looking for more efficient and cost-effective methods of ADH immobilization, in this study we explored silica-based supports as an alternative to the use of functionalized polymeric resins. Three commercially available ADHs were immobilized by adsorption and covalent bond formation. The obtained supported biocatalysts were applied for the bioreduction of acetophenone and some derivatives with good yields and excellent enantioselectivity. The important intermediate (S)-1-[3,5-bis(trifluoromethyl)phenyl]ethanol was obtained with a high enantiomeric excess (>99%) by using the highest performing immobilized ADH sample. The reusability of this biocatalyst was investigated in a flow system for five consecutive runs; the experiments showed that the biocatalyst could be recycled without a loss of activity and enantioselectivity. Finally, cross-linking with the glutaraldehyde of the supported biocatalyst was also carried out to prevent the leaching of the enzyme during the catalytic reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.