Abstract

Acetylcholinesterase (AChE; EC 3.1.1.7) is a group of enzymes that catalyzes the hydrolysis of the neurotransmitter acetylcholine (ACh) into choline and acetate. AChE inhibition is commonly utilized as a biomarker for pesticides. In membrane based AChE biosensors the enzyme immobilization onto an electrode surface is of prime importance. In previous studies, conducting polymers-based supports have been used for the immobilization of AChE. In this study, a novel immobilization platform was developed. The simultaneous polymerization of pyrrole and functional thiol/ene monomers was performed to prepare conductive thermosets. AchE was covalently immobilized onto the membranes through the epoxy functional groups. After the immobilization process, the optimal temperature increased to 50 °C, displaying a better thermal stability and the optimum pH was elevated to 8.5. The activity of the immobilized enzyme was tested in the presence of several metals, and it was found that Cu2+ ions caused a noticable inhibition. After 10 cycles, the immobilized enzyme retained 51% of its original activity. In accordance with our results; the durability and the stability of the immobilized enzyme were improved. In future studies, the method applied here can be used in the design of an AchE biosensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.