Abstract

The ongoing transition to renewable energy sources and the implementation of artificial photosynthetic setups call for an efficient and stable water oxidation catalyst (WOC). Here, we heterogenize a molecular all-inorganic [CoIIICoII(H2O)W11O39]7– ({CoIIICoIIW11}) Keggin-type polyoxometalate (POM) onto a model TiO2 surface, employing a 3-aminopropyltriethoxysilane (APTES) linker to form a novel heterogeneous photosystem for light-driven water oxidation. The {CoIIICoIIW11}-APTES-TiO2 hybrid is characterized using a set of spectroscopic and microscopic techniques to reveal the POM integrity and dispersion to elucidate the POM/APTES and APTES/TiO2 binding modes as well as to visualize the attachment of individual clusters. We conduct photocatalytic studies under heterogeneous and homogeneous conditions and show that {CoIIICoIIW11}-APTES-TiO2 performs as an active light-driven WOC, wherein {CoIIICoIIW11} acts as a stable co-catalyst for water oxidation. In contrast to the homogeneous WOC performance of this POM, the heterogenized photosystem yields a constant WOC rate for at least 10 h without any apparent deactivation, demonstrating that TiO2 not only stabilizes the POM but also acts as a photosensitizer. Complementary studies using photoluminescence (PL) emission spectroscopy elucidate the charge transfer mechanism and enhanced WOC activity. The {CoIIICoIIW11}-APTES-TiO2 photocatalyst serves as a prime example of a hybrid homogeneous–heterogeneous photosystem that combines the advantages of solid-state absorbers and well-defined molecular co-catalysts, which will be of interest to both scientific communities and applications in photoelectrocatalysis and CO2 reduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.