Abstract

BackgroundImmobilization allows easy recovery and reuse of enzymes in industrial processes. In addition, it may enhance enzyme stability, allowing prolonged use. A simple and novel method of immobilizing β-galactosidase is reported. Effects of immobilization on the enzyme characteristics are explained. β-Galactosidase is well established in dairy processing and has emerging applications in novel syntheses. Methodsβ-Galactosidase was immobilized by physical adsorption on halloysite, an aluminosilicate nanomaterial. Optimal conditions for adsorption were identified. The optimally prepared halloysite-adsorbed enzyme was then entrapped in a porous matrix of nanocrystals of sulfated bacterial cellulose, to further enhance stability. ResultsUnder optimal conditions, 89.5% of the available protein was adsorbed per mg of halloysite. The most active and stable final immobilized biocatalyst had 1 part by mass of the enzyme-supporting halloysite particles mixed with 2 parts of cellulose nanocrystals. Immobilization raised the optimal pH of the catalyst to 7.5 (from 6.0 for the native enzyme) and temperature to 55 °C (40 °C for the native enzyme). During storage at 25 °C, the immobilized enzyme retained 75.8% of initial activity after 60 days compared to 29.2% retained by the free enzyme. ConclusionThe immobilization method developed in this work enhanced enzyme stability during catalysis and storage. Up to 12 cycles of repeated use of the catalyst became feasible. General significanceThe simple and rapid immobilization strategy of this work is broadly applicable to enzymes used in diverse bioconversions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call