Abstract

Lipase was extracted and purified from Pseudomonas aeruginosa SRT9. Culture conditions were optimized and highest lipase production amounting to 147.36 U/ml was obtained after 20 h incubation. The extracellular lipase was purified on Mono QHR5/5 column, resulting in a purification factor of 98-fold with specific activity of 12307.81 U/mg. Lipase was immobilized on tri (4-formyl phenoxy) cyanurate to form Schiff’s base. An immobilization yield of 85% was obtained. The native and immobilized lipases were used for catalyzing the hydrolysis of olive oil in aqueous medium. Comparative study revealed that immobilized lipase exhibited a shift in optimal pH from 6.9 (free lipase) to 7.5 and shift in optimal temperature from 55 °C to 70 °C. The immobilized lipase showed 20–25% increase in thermal stability and retained 75% of its initial activity after 7 cycles. It showed good stability in organic solvents especially in 30% acetone and methanol. Enzyme activity was decreased by ∼60% when incubated with 30% butanol. The kinetic studies revealed increase in KM value from 0.043 mM (native) to 0.10 mM for immobilized lipase. It showed decrease in the Vmax of immobilized enzyme (142.8 μmol min−1 mg−1), suggesting enzyme activity decrease in the course of covalent binding. The immobilized lipase retained its initial activity for more than 30 days when stored at 4 °C in Tris-HCl buffer pH 7.0 without any significant loss in enzyme activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call