Abstract
The redistribution process of arsenate (As(V)) and the variation in As(V) content in different locations must be clarified to ensure low mobility of As(V) during microbial ferrihydrite reduction. In this study, we investigated As(V) immobilization and redistribution processes when ferrihydrite was incubated with Geobacter sulfurreducens in the presence of titanium dioxide (TiO2) nanoparticles. Our study results showed that, As(V) in the aqueous phase and ferrihydrite were redistributed on light minerals (goethite), heavy minerals (ferrihydrite and magnetite), and extracellular polymeric substances (EPS) induced by G. sulfurreducens during ferrihydrite reduction. Interestingly, we found that As(V) in the form of arsenate ion (AsO43-) was adsorbed by the functional groups of the EPS, while the formed FeII3(AsVO4)2 was wrapped in the network structure of EPS. Moreover, the addition of TiO2 nanoparticles did not promote but delayed the entire ferrihydrite reduction, As(V) immobilization and redistribution processes. Furthermore, changes in the aqueous arsenic and iron concentrations are closely related to the formation time of secondary minerals. Our study findings provide new insights into the As(V) immobilization process mediated by G. sulfurreducens under anaerobic conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.