Abstract

A new approach for a simple electrochemical detection of PAT gene fragment is described. Poly(2,6-pyridinedicarboxylic acid) (PDC) modified glassy carbon electrode (GCE) was prepared by potential scan electropolymerization in an aqueous solution. Mg2+ ions were incorporated by immersion of the modified electrode in 0.5 mol/L aqueous solution of MgCl2 to complete the preparation of a generic “activated” electrode ready for binding the probe DNA. The ssDNA was linked to the conducting polymer by forming a bidentate complex between the carboxyl groups on the polymer and the phosphate groups of DNA via Mg2+. DNA immobilization and hybridization were characterized with differential pulse voltammetry (DPV) by using methylene blue (MB) as indicator and electrochemical impedance spectroscopy (EIS). The EIS was of higher sensitivity for DNA detection as compared with voltammetric methods in our strategy. The electron transfer resistance (R et) of the electrode surface in EIS in [Fe(CN)6]3−/4− solution increased after the immobilization of the DNA probe on the Mg/PDC/GCE electrode. The hybridization of the DNA probe with complementary DNA (cDNA) made R et increase further. The difference between the R et at ssDNA/Mg/PDC/GCE and that at hybridization DNA modified electrode (dsDNA/Mg/PDC/GCE) was applied to determine the specific sequence related to the target PAT gene with the dynamic range comprised between 1.0 × 10−9 and 1.0 × 10−5 mol/L. A detection limit of 3.4 × 10−10 mol/L of oligonucleotides can be estimated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.