Abstract

Ketamine has been clinically proven to ameliorate depression, including treatment-resistant depression. The detailed mechanism of action of ketamine in treatment-resistant depression remains unclear. We examined the effects of ketamine on the immobility times of adrenocorticotropic hormone (ACTH)-treated rats during the forced swim test, and we explored the mechanism by which ketamine acts in this model. We investigated the neuroanatomical site of action by microinjecting ketamine into the medial prefrontal cortex of rats. A significant reduction of the rats' immobility during the forced swim test was observed after the intraperitoneal injection of ketamine in both saline- and ACTH-treated rats. The microinjection of ketamine into the medial prefrontal cortex also decreased immobility during the forced swim test in both saline- and ACTH-treated rats. The immobility-decreasing effect of intraperitoneally injected ketamine was blocked by administering WAY100635, a 5-HT1A receptor antagonist, into the medial prefrontal cortex. These findings contribute to the evidence that ketamine can be useful against treatment-resistant depressive conditions. The immobility-reducing effects of ketamine might be mediated by 5-HT1A receptor activity in the medial prefrontal cortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.