Abstract

Microperoxidase-11 (MP-11) has been widely used in enzymatic reactions. Further improvement of its performance requires a better charge transfer and more exposure of its active site in the enzymatic conversions, which can be achieved by immobilisation of MP-11 into functional materials. However, conventional immobilisation techniques always suffer from non-specific and uncontrolled weak interactions and energy level of two entities in the hybrid is not perfectly matched, thus resulting in limited improvement of the system. In this work, a hybrid material of layered MoO3 and MP-11 was synthesised by a self-assembly technique through a covalent interaction. Physicochemical characterisation indicated that there is a charge transfer from MP-11 to MoO3 and a covalent bond is formed in the hybrid. A notable enhancement of biocatalysis and photocurrent conversion were observed in the studies, which are due to a synergistic effect and band alignment of the two entities in the hybrid. The superior combined properties provide a great opportunity for developing high performance enzymatic conversion systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.