Abstract

The optical excitation of surface plasmon resonance (SPR) at a metal dielectric interface has been used to study the binding of immunoglobulin G (IgG) to gold and anti-IgG to immobilised IgG layers. In these studies both a monoclonal mouse and polyclonal sheep IgG were used as receptor layers for anti-IgG. The kinetics of binding were investigated by monitoring the reflectivity of light at an angle close to plasmon resonance. Both the initial rate of change and final reflectivity were measured during and after protein binding. The amount of protein bound to the surface was found to be less for the monoclonal mouse IgG compared to the polyclonal sheep IgG, these two IgG nominally being of the same dimensions and molecular weight. Further, anti-IgG binding produced greater changes in reflectivity than the IgG layers. By fitting the full angle-dependent reflectivity data to the Fresnel equation the effective protein layer thickness of IgG and anti-IgG as a function of concentration were determined. Differences in the effective thickness of the bound layer for the two IgG was observed, the mouse IgG having a thinner effective thickness compared with the sheep IgG. The limitations of direct binding of protein to metal surfaces in SPR biosensor applications are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.