Abstract

With the advent and increased usage of posterior, lateral, and anterior surgical approaches to the craniocervical junction (CCJ), it is essential to have a sound understanding of the osseous, ligamentous, and neurovascular layers of this region as well as their three-dimensional (3D) orientations and functional kinematics. Advances in 3D technology can be leveraged to develop a more nuanced and comprehensive understanding of the CCJ, classically depicted via dissections and sketches. As such, this study aims to illustrate - with the use of 3D technologies - the major anatomical landmarks of the CCJ in an innovative and informative way. Photogrammetry, structured light scanning, and 3D reconstruction of medical images were used to generate these high-resolution volumetric models. A clear knowledge of the critical anatomical structures and morphometrics of the CCJ is crucial for the diagnosis, classification, and treatment of pathologies in this transitional region.

Highlights

  • IntroductionThe craniocervical junction (CCJ) is a complex transitional region between the base of the skull and the upper cervical spine [1]

  • The craniocervical junction (CCJ) is a complex transitional region between the base of the skull and the upper cervical spine [1]. It is formed by the occipital bone and the first two cervical vertebrae, C1 or atlas and C2 or axis, both of which contain vital neural and vascular structures

  • We aim to describe the anatomy, kinematics, and osteometry of the CCJ

Read more

Summary

Introduction

The craniocervical junction (CCJ) is a complex transitional region between the base of the skull and the upper cervical spine [1] It is formed by the occipital bone and the first two cervical vertebrae, C1 or atlas and C2 or axis, both of which contain vital neural and vascular structures (i.e. brainstem, spinal cord, cranial nerves, and the vertebral artery). This articulation is the most mobile of the cervical spine and allows for 40% of all cervical flexion-extension and 60% of all head rotation [2]. Understanding the correct alignments of the CCJ components and the relevant osteometric lines and angles is critical to select the best treatment, assess the best operative plan, and detect and classify the anomalies and instabilities of this region

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call