Abstract
Although the CFD-DEM simulations could predict the long-range hydrodynamic interaction with high accuracy, they face difficulty in the close distance between particles because mesh resolution is not fine enough to capture the lubrication effects. As a remedy, we used a variant of Immersed Boundary method in our CFD solver to model a problem as a fully resolved simulation. Then, we developed a second-order boundary layer reconstruction approach to increase the accuracy of the immersed boundary method. Furthermore, for the first time and in the present work, we considered how shared cells between the particles need to be treated in the simulation of two approaching particles. Moreover, we investigated the relationship between mesh resolution and time step size on the accuracy of the calculated force. We found a specific range for this ratio to capture the correct short-range hydrodynamic interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.