Abstract

The familiar heat shock response in cells comprises the enhanced expression of molecular chaperones. In recent experiments with the Hsp70 system of Escherichia coli, the co-chaperone GrpE has been found to undergo a reversible thermal transition in the physiological temperature range. Here, we tested whether this thermal transition is of functional significance in the complete DnaK/DnaJ/GrpE chaperone system. We found that a mere increase in temperature resulted in a higher fraction of fluorescence-labeled peptides being sequestered by DnaK. This direct adaptation of the DnaK/DnaJ/GrpE chaperone system to heat shock conditions may serve to bridge the time lag of enhanced chaperone expression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.