Abstract

Hurricanes and associated stormwater runoff events are expected to greatly impact coastal marine water quality, yet little is known about their immediate effects on microbiological quality of near-shore water. This study sampled Hilo Bay immediately after the impact of Hurricane Lane to understand the spatial and temporal variations of the abundance and diversity of fecal indicator enterococci, common fecal pathogens, and antibiotic resistance genes (ARGs). Water samples from seven sampling sites over 7 days were collected and analyzed, which showed that the overall microbiological water quality parameters [enterococci geometric mean (GM): 6-22 cfu/100 mL] fell within water quality standards and that the temporal dynamics indicated continuing water quality recovery. However, considerable spatial variation was observed, with the most contaminated site exhibiting impaired water quality (GM = 144 cfu/100 mL). The Enterococcus population also showed distinct genotypic composition at the most contaminated site. Although marker genes for typical fecal pathogens (invA for Salmonella, hipO for Campylobacter, mip for Legionella pneumophila, and eaeA for enteropathogenic Escherichia coli) were not detected, various ARGs (ermB, qurS, tetM, blaTEM, and sul1) and integron-associated integrase intI1 were detected at high levels. Understanding the temporal and spatial variation of microbiological water quality at fine granularity is important for balancing economic and recreational uses of coastal water and the protection of public health post the impact of major hurricane events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.