Abstract

Oropharyngeal dysphagia frequently presents in people with idiopathic Parkinson's disease (IPD). Clinical sequelae of dysphagia in this group include weight loss and aspiration pneumonia, the latter of which is the leading cause of hospital admissions and death in IPD. Thermal-tactile stimulation (TTS) is a sensory technique whereby stimulation is provided to the anterior faucial pillars to speed up the pharyngeal swallow. The effects of TTS on swallowing have not yet been investigated in IPD. The aim of this study was to investigate the immediate effects of TTS on the timing of swallow in a cohort of people with IPD and known oropharyngeal dysphagia. Thirteen participants with IPD and known dysphagia attended for videofluoroscopy during which standardised volumes of liquid barium and barium paste were administered preceding and immediately subsequent to TTS. The immediate effects of TTS on swallowing were examined using oral, pharyngeal, and total transit times and pharyngeal delay times as outcome measures. TTS significantly reduced median pharyngeal transit time on fluids (0.20 s, 95% CI = 0.12-0.28, p = 0.004) and on paste (0.3 s, 95% CI = 0.08-0.66, p = 0.01). Median total transit time was also reduced on fluids (0.48 s, 95% CI = 0.00-1.17, p = 0.049) and on paste (0.52 s, 95% CI = 0.08-1.46, p = 0.033). Median pharyngeal delay time was reduced on fluids (0.20 s, 95% CI = 0.12-0.34, p = 0.002). TTS did not significantly alter median oral transit time on either fluid or paste consistency. TTS significantly reduced temporal measures of the pharyngeal phase of swallowing in the IPD population. Significant results may be attributed to the role of sensory stimulation in improving motor function in IPD, with emphasis on the impaired glossopharyngeal and vagus nerves in this population. It is still unclear whether these findings will translate into a clinically beneficial effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.