Abstract

Propulsion and paretic plantar flexor activity after stroke are deficient in walking. This study examined whether walking on an inclined treadmill increased muscle activity and whether it resulted in increased propulsion and muscle activity during level ground walking. Nine people with hemiparesis caused by stroke and nine healthy controls participated. The participants walked at treadmill inclines of 0, 2.5, and 5 degrees for 5 mins at each level, for a total walking period of 15 mins. Surface electromyograms were obtained from the tibialis anterior and medial gastrocnemius muscles. Anterior-posterior ground reaction forces and electromyograms were recorded during overground walking before, immediately after, and 20 mins after inclined treadmill walking. Plantar flexor activity was significantly greater at 2.5 and 5 degree incline compared with no incline bilaterally in healthy controls and in the nonparetic side of people with stroke (P < 0.025) but not in the paretic side (P > 0.245). Electromyograms in control and stroke groups and the propulsive force in controls during overground walking were not significantly different before and after inclined treadmill walking. Overground propulsive forces after inclined treadmill walking in the stroke group were marginally higher in the nonparetic side (P < 0.025) but were slightly lower in the paretic side (P < 0.025). Future tests should study the effect of higher inclines and faster treadmill speeds on paretic electromyogram activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call