Abstract
Siu PM, Tam BT, Chow DH, Guo J-Y, Huang Y-P, Zheng Y-P, Wong SH. Immediate effects of 2 different whole-body vibration frequencies on muscle peak torque and stiffness. Objective To examine the immediate effects of 2 vibration protocols with different vibration frequencies that yielded the same maximum acceleration (106.75ms −2) on muscle peak torque and stiffness of knee extensor and flexor. Design Randomized crossover study with repeated measures. Setting Laboratory setting. Participants Recreationally active male adults (N=10). Intervention Participants performed 10 bouts of 60-second static half squats intermitted with a 60-second rest period between bouts on a platform with no vibration (control) and a vibration frequency of 26Hz or 40Hz. Main Outcome Measures Concentric and eccentric peak torques of knee extensor and flexor were examined within 5 minutes before and after vibration by isokinetic test. Young's modulus as an index of tissue stiffness was determined at quadriceps and hamstring pre- and postvibration by using an ultrasound indentation method. Results The 2-way repeated-measures analysis of variance indicated a significant interaction effect between vibration and vibration frequency for knee extensor concentric peak torque ( P=.003). The vibration-induced changes of knee extensor concentric peak torque in vibration frequency of 26Hz (14.5Nm) and 40Hz (12.0Nm) were found to be significantly greater than that in controls (−29.4Nm) ( P<.05). The change in eccentric peak torque of knee flexor after vibration tended to be greater in 26Hz of vibration frequency when compared with controls (26Hz of vibration frequency vs controls: 13.9±7.1 vs −11.4±5.3Nm, P=.08). No statistically significant differences were obtained in tissue stiffness in the quadriceps and hamstring with any of the conditions. Conclusions Our data suggest that whole-body vibration at a frequency of 26Hz and 40Hz preclude the decline in concentric peak torque of knee extensor observed after 10 bouts of 60 seconds of static half squats. A change in muscle mechanical stiffness property as induced by whole-body vibration is not supported by our data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.