Abstract

Spinal cord injury (SCI) presents challenging and unpredictable neurological recovery. During inflammatory conditions, the amount of serum albumin and nutrition consumption decreases. Currently, it is proposed to measure serum albumin and glucose content in human or animal subjects to predict the recovery rate and the efficiency of treatments following SCI. In this study, the effect of extra-cellular vesicles (EVs) from immortalized human adipose tissue-derived mesenchymal stem cells (hTERT-MSCs) equipped with the ectopic expression of the human indoleamine 2,3-dioxygenase-1 (IDO1) gene on serum albumin and glucose levels was investigated. After pre-clearing steps of 72-hr conditioned media, small EVs (sEVs) were isolated based on the ultra-filtration method. They were encapsulated with a chitosan-based hydrogel. Five experimental groups (female rats, N = 30, ~ 230 g) were considered, including SCI, sham, hydrogel, control green fluorescent protein (GFP)-EVs and IDO1-EVs. The 60.00 µL of hydrogel or hydrogels containing 100 µg sEVs from GFP or IDO1-EVs were locally injected immediately after SCI (laminectomy of the T10 vertebra and clip compression). After 8 weeks, non-fasting serum glucose and albumin levels were measured. The results indicated that the level of serum albumin in the animals received IDO1-EVs (3.52 ± 0.04) was increased in comparison with the SCI group (3.00 ± 0.94). Also, these animals indicated higher glucose levels in their serum (250.17 ± 69.61) in comparison with SCI ones (214 ± 45.34). Although these changes were not statistically significant, they could be considered as evidence for the beneficial effects of IDO1-EVs administration in the context of SCI to reduce hypoalbuminemia and improve energy consumption. More detailed experiments are required to confirm these results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call