Abstract

Ethanol (EtOH) damages the hippocampus, a brain region that is involved in learning and memory processes. The mechanisms responsible for this effect of EtOH are not fully understood. We recently demonstrated that acute EtOH exposure potently stimulates oscillatory activity driven by the excitatory actions of GABA in the CA3 region of the neonatal rat hippocampus. This activity can be recorded during the growth spurt period as giant depolarizing potentials (GDPs). Here, we characterized the effects of prolonged EtOH exposure on GDPs. In the first study, we prepared hippocampal coronal slices from neonatal rats and exposed these to control artificial cerebrospinal fluid (ACSF) or ACSF plus 50 mM EtOH for 3–4 h. We then performed whole-cell patch-clamp electrophysiological recordings from CA3 pyramidal neurons, which revealed that tolerance to the GDP stimulating effects of EtOH did not occur after continuous exposure. In the second study, we exposed neonatal rats to air or air plus 1.9 g/dl EtOH in vapor chambers for 4 h/day for 1 or 3 days (neonatal peak blood EtOH concentration = 40–45 mM). We then performed slice electrophysiological studies 24 h after the end of EtOH exposure and found that there was no statistically significant difference in the acute effect of 50 mM EtOH on GDP frequency in samples from neonates exposed to air or air plus EtOH. These findings indicate that EtOH persistently stimulates network-driven oscillatory activity in the developing hippocampus. We propose that the lack of adaptive response to continuous EtOH exposure could make immature neuronal networks particularly vulnerable to the actions of this agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call