Abstract

Therapeutic strategies designed to inhibit the activation of microglia may lead to significant advancement in the treatment of most neurodegenerative diseases. 7-hydroxy-5-methoxy-4-methyl-3-(4-methylpiperazin-1-yl)-coumarin (IMM-H004) is a novel compound and has been reported exerting potent neuroprotective effects which may be related to anti-inflammation. In the present study, the anti-inflammatory effects of IMM-H004 were investigated in lipopolysaccharide (LPS)-treated BV2 microglia. Our observations indicated that treatment with IMM-H004 significantly inhibited BV2 microglia activation, protected PC12 cells and primary neurons against indirect toxicity mediated by exposure to conditioned medium (CM) from LPS-treated BV2 cells. Additionally, IMM-H004 significantly suppressed the release of TNF-α, IL-1β and NO, and suppressed the expression of pro-inflammatory mediators and cytokines such as iNOS, COX-2, and IL-6 in LPS-stimulated BV2 microglia. The nuclear translocation of NF-κB and the phosphorylation level of JNK and p38 MAPK pathways were also inhibited by IMM-H004 in LPS-treated BV2 microglia. Moreover, IMM-H004 also was a strong selective OH scavenger whose effect was similar with vitamin C. Overall, our findings suggested that IMM-H004 might be a promising therapeutic agent for alleviating the progress of neurodegenerative diseases associated with microglia activation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call