Abstract

Imitation learning refers to the problem where an agent learns a policy that mimics the demonstration provided by the expert, without any information on the cost function of the environment. Classical approaches to imitation learning usually rely on a restrictive class of cost functions that best explains the expert's demonstration, exemplified by linear functions of pre-defined features on states and actions. We show that the kernelization of a classical algorithm naturally reduces the imitation learning to a distribution learning problem, where the imitation policy tries to match the state-action visitation distribution of the expert. Closely related to our approach is the recent work on leveraging generative adversarial networks (GANs) for imitation learning, but our reduction to distribution learning is much simpler, robust to scarce expert demonstration, and sample efficient. We demonstrate the effectiveness of our approach on a wide range of high-dimensional control tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.