Abstract
Humans and other animals have a natural ability to learn skills from observation, often simply from seeing the effects of these skills: without direct knowledge of the underlying actions being taken. For example, after observing an actor doing a jumping jack, a child can copy it despite not knowing anything about what's going on inside the actor's brain and nervous system. The main focus of this thesis is extending this ability to artificial autonomous agents, an endeavor recently referred to as "imitation learning from observation." Imitation learning from observation is especially relevant today due to the accessibility of many online videos that can be used as demonstrations for robots. Meanwhile, advances in deep learning have enabled us to solve increasingly complex control tasks mapping visual input to motor commands. This thesis contributes algorithms that learn control policies from state-only demonstration trajectories. Two types of algorithms are considered. The first type begins by recovering the missing action information from demonstrations and then leverages existing imitation learning algorithms on the full state-action trajectories. Our preliminary work has shown that learning an inverse dynamics model of the agent in a self-supervised fashion and then inferring the actions performed by the demonstrator enables sufficient action recovery for this purpose. The second type of algorithm uses model-free end-to-end learning. Our preliminary results indicate that iteratively optimizing a policy based on the closeness of the imitator's and expert's state transitions leads to a policy that closely mimics the demonstrator's trajectories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.