Abstract

Graphite carbon nitride (g-C3N4) is a significant non-metal photocatalyst, but still challenging for photocatalytic degradation of pollutants because of its poor visible light utilization, easy recombination of photo-generated carriers and low surface reactive reaction sites. In this paper, perylene diimide (PDI), an electron-deficient building block for constructing n-type organic semiconductors, was introduced into the framework of g-C3N4 (PDI-g-C3N4) to build polymer with donor–acceptor structure for energy band amelioration, achieving the most expanded visible light response up to date. Besides, a large dihedral angle (90°) induced by PDI moiety in PDI-g-C3N4 changes the molecular aggregation behavior according to calculations, which is advantageous to increase surface area for the reactive site exposure. The most promising functional photocatalyst PDI-g-C3N4/MIL is constructed by in-situ generation of NH2-MIL-53(Fe) on the surface of PDI-g-C3N4 to further facilitate the separation and transfer of interfacial photo-induced carriers. Through a finely adjusting ratio of PDI-g-C3N4 in heterojunction, the target material of PDI-g-C3N4/MIL exhibits superior activity for the photodegradation of organic pollutants in the presence of H2O2 and visible light illumination, providing potential direction in practical application for wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.