Abstract

Imidazolium-2-carboxylates (NHC-CO(2) adducts, 3) and (benz)imidazolium hydrogen carbonates ([NHC(H)][HCO(3)], 4) were independently employed as organic precatalysts for various molecular N-heterocyclic carbene (NHC) catalyzed reactions. NHC-CO(2) adducts were obtained by carboxylation in THF of related free NHCs (2), while the synthesis of [NHC(H)][HCO(3)] precursors was directly achieved by anion metathesis of imidazolium halides (1) using potassium hydrogen carbonate (KHCO(3)) in methanolic solution, without the need for the prior preparation of free carbenes. Thermogravimetric analysis (TGA) and TGA coupled with mass spectrometry (TGA-MS) of most [NHC(H)][HCO(3)] precursors 4 showed a degradation profile in stages, with either a concomitant or a stepwise release of H(2)O and CO(2), between 108 and 280 °C, depending on the nature of the azolium and substituents. In solution, NHC generation from both [NHC(H)][HCO(3)] salts and NHC-CO(2) adducts could be achieved at room temperature, most likely by a simple solvation effect. Both types of precursors proved efficient for organocatalyzed molecular reactions, including cyanosilylation, benzoin condensation, and transesterification reactions. The catalytic efficiencies of NHC-CO(2) adducts 3 were found to be approximately 3 times higher than those of their [NHC(H)][HCO(3)] counterparts 4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call