Abstract

In response to the escalating challenge of bacterial drug resistance, the imperative to counteract planktonic cell proliferation and eliminate entrenched biofilms underscores the necessity for cationic polymeric antibacterials. However, limited efficacy and cytotoxicity challenge their practical use. Here, novel imidazolium-based main-chain copolymers with imidazolium (PIm+) as the cationic component are introduced. By adjusting precursor molecules, hydrophobicity and cationic density of each unit are fine-tuned, resulting in broad-spectrum bactericidal activity against clinically relevant pathogens. PIm+1 stands out for its potent antibacterial performance, with a minimum inhibitory concentration of 32µg mL-1 against Methicillin-resistant Staphylococcus aureus (MRSA), and substantial biofilm reduction in Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) biofilms. The bactericidal mechanism involves disrupting the outer and cytoplasmic membranes, depolarizing the cytoplasmic membrane, and triggering intracellular reactive oxygen species (ROS) generation. Collectively, this study postulates the potential of imidazolium-based main-chain copolymers, systematically tailored in their sequences, to serve as a promising candidate in combatting drug-resistant bacterial infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.