Abstract

The role of islet nitric oxide (NO) production in insulin-releasing mechanisms is unclear. We examined whether the beneficial effects of the imidazoline derivative RX 871024 (RX) on beta-cell function might be related to perturbations of islet NO production. Experiments were performed with isolated islets or intact mice challenged with glucose or carbachol with or without RX treatment. Insulin was determined with radioimmunoassay, NO generation with high-performance liquid chromatography and expression of inducible NO synthase (iNOS) with confocal microscopy. RX treatment, in doses lacking effects on basal insulin, greatly amplified insulin release stimulated by the NO-generating secretagogues glucose and carbachol both in vitro and in vivo. RX also improved the glucose tolerance curve. Islets incubated at high glucose levels (20 mmol L(-1)) displayed increased NO production derived from both neuronal constitutive NO synthase (ncNOS) and iNOS. RX abrogated this glucose-induced NO production concomitant with amplification of insulin release. Confocal microscopy revealed abundant iNOS expression in beta cells after incubation of islets at high but not low glucose levels. This was abolished after RX treatment. Similarly, islets cultured for 24 h at high glucose levels showed intense iNOS expression in beta cells. This was abrogated with RX and followed by an amplified glucose-induced insulin release. RX effectively counteracts the negative impact of beta-cell NO generation on insulin release stimulated by glucose and carbachol suggesting imidazoline compounds by virtue of NOS inhibitory properties being of potential therapeutic value for treatment of beta-cell dysfunction in hyperglycaemia and type 2 diabetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.