Abstract

Protein structures are stabilized by different types of hydrogen bonds. However, unlike the DNA double helical structure, the N-H···N type of hydrogen bonds is relatively rare in proteins. N-H···N hydrogen bonds formed by imidazole groups of two histidine residues have not been investigated. We have systematically analyzed 5333 high-resolution protein structures with resolution 1.8 Å or better and identified 285 histidine pairs in which the nitrogen atoms of the imidazole side chains can potentially participate in N-H···N hydrogen bonds. The histidine pairs were further divided into two groups, neutral-neutral and protonated-neutral, depending on the protonation state of the donor histidine. Quantum chemical calculations were performed on imidazole groups adopting the same geometry observed in the protein structures. Average interaction energies between the interacting imidazole groups are -6.45 and -22.5 kcal/mol for neutral-neutral and protonated-neutral, respectively. Hydrogen bond interaction between the imidazole moieties is further confirmed by natural bond orbital analyses of the model compounds. Histidine residues involved in N-H···N hydrogen bonds are relatively more buried and have low B-factor values in the protein structures. N-H···N hydrogen bond formed by a pair of buried histidine residues can significantly contribute to the structural stability of proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.