Abstract

Six-membered rings are common building blocks of many carbon structures. Recent studies have shown that penta-graphene composed of five-membered carbon rings have properties very different from that of graphene. This has motivated the search for new carbon structures. Among this is cp-graphyne, composed of carbon pentagons and bridged by acetylenic linkers. However, the bandgap of cp-graphyne, like that of graphene, is zero, making it unsuitable for applications in electronics. Herein, we show that a new two-dimensional (2D) carbon nitride structure formed by assembling the five-membered imidazole molecules with acetylenic linker can overcome this limitation. Named ID-GY, this new material not only has a direct band gap of 1.10 eV, but it is dynamically and mechanically stable and can withstand temperatures up to 1200 K. In addition, due to its porous and anisotropic geometry, the Young's modulus of ID-GY along the diagonal direction is lower than that of most 2D materials reported previously. Equally important, ID-GY exhibits strong refraction near infrared (IR) and has potential for applications in nanoelectronics and optical devices. These results, based on density functional theory, can stimulate experimental studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call