Abstract

Miconazole and clotrimazole, members of a class of imidazole agents which have broad spectrum antimycotic activity, were shown to be potent inhibitors of steroid aromatase activity of human placental microsomes. The I 50 values for the inhibition of aromatase activity by miconazole, clotrimazole, ketoconazole, and aminoglutethimide were 0.6, 1.8, 60 and 44 μM respectively. The most effective compound, miconazole, exhibited competitive kinetics with respect to androstenedione, the aromatase substrate. The apparent inhibitory constant ( K i ) was 55 nM, under assay conditions where the apparent K m for androstenedione was 220 nM. The inhibition of aromatase activity by miconazole was shown to be reversible by dilution. Miconazole was a relatively poor inhibitor of the cholesterol side chain cleavage activity of a placental mitochondria-enriched fraction, while both clotrimazole and ketoconazole markedly inhibited this mitochondrial monooxygenase activity. Spectrophotometric studies revealed that miconazole bound to the cytochrome P-450 component of the placental microsomal aromatase complex and had negligible effect on NADPH-cytochrome c (P-450) reductase activity. These results strongly support direct interaction of miconazole with microsomal cytochrome P-450 in human placental microsomes with high affinity resulting in the inhibition of aromatase activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call