Abstract

Considerable amount of produced water discharged by the oil industry contributes to an environmental imbalance due to the presence of several components potentially harmful to the ecosystem. We investigated the factors influencing the adsorption capacity of Zinc Imidazolate Framework-8 (ZIF-8) in finite bath systems for crude oil removal from petroleum extraction in synthetic produced water. ZIF-8, experimentally obtained by solvothermal method, was characterized by XRD, FTIR, TGA, BET and its point of zero charge (pHpcz) was determined. Synthesized material showed high crystallinity, with surface area equal to 1558 m2 g−1 and thermal stability equivalent to 400 °C. Adsorption tests revealed, based on the Sips model, that the process takes place in a heterogeneous system. Additionally, intraparticle diffusion model exhibited multilinearity characteristics during adsorption process. Thermodynamic investigation demonstrated that adsorption process is spontaneous and exothermic, indicating a physisorption phenomenon. These properties enable the use of ZIF-8 in oil adsorption, which presented an adsorption capacity equal to 452.9 mg g−1. Adsorption mechanism was based on hydrophobic interactions, through apolar groups present on ZIF-8 structure and oil hydrocarbons, and electrostatic interactions, through the difference in charges between positive surface of adsorbent and negatively charged oil droplets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call