Abstract

A series of derivatives of 4-phenyl-1,4-dihydropyridine bearing imidazol-1-yl or pyridin-3-yl moieties on the phenyl ring were synthesized with the aim of combining Ca2+ antagonism and thromboxane A2 (TxA2) synthase inhibition in the same molecule. Some of these compounds showed significant combined Ca2+ antagonism and TxA2 synthase inhibition in vitro, while others showed only one single activity. Structural requirements for significant single or combined activities are discussed. Theoretical conformational analysis, by molecular mechanics and semiempirical AM1 calculations, was performed for 1,4-dihydro-2,6-dimethyl-4-[3-(1H-imidazol-1-yl)phenyl]- 3,5-pyridinedicarboxylic acid, diethyl ester (FCE 24265) and two close congeners. FCE 24265, which inhibited TxB2 production in rat whole blood with IC50 = 1.7 x 10(-7) M and antagonized K+ induced contraction in guinea pig aorta with IC50 = 6.0 x 10(-8) M, was selected for further pharmacological evaluation. Our results show that this compound is less potent than nifedipine both in vitro and in vivo yet presents a favorable profile in vivo, lowering blood pressure without inducing reflex tachycardia. Moreover, its additional potent and selective TxA2 synthase inhibitory activity makes this compound an interesting pharmacologic tool in pathologies where both enhanced TxA2 synthesis and cellular Ca2+ overload are involved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.