Abstract

INTRODUCTIONMagnetic Resonance Imaging (MRI) is routinely used in the assessment of children’s brain tumours. Reduced diffusion and increased perfusion on MRI are commonly associated with higher grade but there is a lack of quantitative data linking these parameters to survival. Machine learning is increasingly being used to develop diagnostic tools but its use in survival analysis is rare. In this study we combine quantitative parameters from diffusion and perfusion MRI with machine learning to develop a model of survival for paediatric brain tumours. METHOD: 69 children from 4 centres (Birmingham, Liverpool, Nottingham, Newcastle) underwent MRI with diffusion and perfusion (dynamic susceptibility contrast) at diagnosis. Images were processed to form ADC, cerebral blood volume (CBV) and vessel leakage correction (K2) parameter maps. Parameter mean, standard deviation and heterogeneity measures (skewness and kurtosis) were calculated from tumour and whole brain and used in iterative Bayesian survival analysis. The features selected were used for k-means clustering and differences in survival between clusters assessed by Kaplan-Meier and Cox-regression.RESULTSBayesian analysis revealed the 5 top features determining survival to be tumour volume, ADC kurtosis, CBV mean, K2 mean and whole brain CBV mean. K-means clustering using these features showed two distinct clusters (high- and low-risk) which bore significantly different survival characteristics (Hazard Ratio = 5.6).DISCUSSION AND CONCLUSIONDiffusion and perfusion MRI can be used to aid the prediction of survival in children’s brain tumours. Tumour perfusion played a particularly important role in predicting survival despite being less routinely measured than diffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.