Abstract
The elimination of the pesticide imazalil (IMZ) spiked into ultrapure water as well as into wastewater applying ozone (O3) and the identification of transformation products was investigated. O3 under hydroxyl radical suppression conditions reacted rapidly with the aliphatic double bond or the imidazole ring in IMZ, yielding several transformation products by partial oxidation. The structures of four oxidation products not yet described were characterized and identified after liquid chromatography coupled with high resolution, high mass accuracy, mass and tandem mass spectrometry (LC/MS and -MSn) in ultrapure water. For two identified transformation products, generated via direct ozone attack on IMZ, formation pathways were proposed. In wastewater, only two of those transformation products were observed. Kinetics studies for the reaction of IMZ with O3, evaluated by the competition kinetic method, resulted in a second-order rate constant kO3,IMZ ∼ (1.02 ± 0.03) × 105 M−1 s−1 at pH 6.6 ± 0.2, indicating that IMZ is completely transformed during the ozonation process. Tests of acute toxicity were performed applying a solution of IMZ in ultrapure water or treated wastewater to Daphnia magna. In both cases the decrease of toxicity was observed after ozone treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.