Abstract
The short text matching models can be roughly divided into representation-based and interaction-based approaches. However, current representation-based text matching models often lack the ability to handle sentence pairs and typically only perform feature interactions at the network’s top layer, which can lead to a loss of semantic focus. The interactive text matching model has significant shortcomings in extracting differential information between sentences and may ignore global information. To address these issues, this article proposes a model structure that combines a dual-tower architecture with an interactive component, which compensates for their respective weaknesses in extracting sentence semantic information. Simultaneously, a method for integrating semantic information is proposed, enabling the model to capture both the interactive information between sentence pairs and the differential information between sentences, thereby addressing the issues with the aforementioned approaches. In the process of network training, a combination of cross-entropy and cosine similarity is used to calculate the model loss. The model is optimized to a stable state. Experiments on the commonly used datasets of QQP and MRPC validate the effectiveness of the proposed model, and its performance is stably improved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.